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FLIGHT VIBRATION DATA O F  ASTROBEE 1500, 
NASA FLIGHT 16.02 

Arney N.  Munson 
Goddard Space Flight Center 

SUMMARY 

This report  presents payload vibration data obtained during the 
launch of the two-stage Astrobee 1500 sounding rocket. Three chan- 
nels of high-frequency vibration data were obtained f rom crystal  
accelerometers  mounted on the payload support structure.  High 
vibratory transient response levels were noted at first- and second- 
stage ignition and just after first-stage burnout. The fo rmer  r e -  
sponses a r e  typical of rocket engine ignition; however, the latter 
response is attributed to the anomalous release of the clam-shell 
heat shield. 

Relatively low level random responses, less than 1 g r m s  , were 
noted during the flight periods of transonic, maximum dynamic pres-  
s u r e ,  and shortly after second stage burnout. Also measured were 
rigid body coning motions that occurred at about Tt-98 seconds, 20 
seconds after second stage burnout. This motion is thought to have 
been initiated by the unwrapping of the sp in  fiberglass motor case 
caused by high motor temperatures. 
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FLIGHT VIBRATION DATA OF ASTROBEE 1500, 
NASA FLIGHT 16.02 

This report  presents the flight vibration data obtained f rom the Astrobee 
1500 Launch, NASA 16.02. The vehicle w a s  launched on October 21, 1964 f rom 
NASA Wallops Station, Wallops Island, Virginia. 

The pr imary objective of NASA flight number 16.02 was to verify certain 
design changes incorporated in the vehicle as a resul t  of previous Astrobee 
failures and to  determine the flight performance of the vehicle in order  to assess 
its usefulness in the National Sounding Rocket Program. A secondary objective 
of 16.02 was to define the vibration environment imposed on the payload in order  
to  develop payload design and vibration testing cr i ter ia .  

The purpose of this report  is to present only the flight vibration data of the 
payload and not to evaluate the total performance of the vehicle. 

PAST HISTORY 

The firing of the 16.02 constitutes the fifth flight of the Astrobee 1500 
sounding rocket vehicle. 
ect  by Space-General Corporation, El  Monte, California. The first two Astro- 
bees were fired f rom the Naval Missile Test Facility at  Point Arguello, Cali- 
fornia as joint projects of Space General and the A i r  Force Cambridge Research 
Laboratories. 
Sandia Corporation. 
the first and third failing at T+22.6 and T+16.5 seconds respectively due to 
s t ructural  failure of the vehicle. 
T+52 seconds due to loss  of telemetry. 

This vehicle was  developed as a company-funded proj- 

The third shot, also from Point Arguello, was conducted by the 
The second firing only resulted in a satisfactory flight; 

Data f rom the second launch was lost after 

Arney N .  Munson 
Goddard Space Flight Center 

INTRODUCTION 

The fourth Astrobee 1500 vehicle, designated NASA 16.01, was acquired 
by NASA f rom Sandia Corporation by means of a trade for  an Argo D-4 Rocket. 
This vehicle incorporated structural  modifications dictated by previous s t ruc-  
tu ra l  failures.  The 1 6 . 0 1  was launched f r o m  Wallops Island on April 8, 1963, 
however it too resulted in structural  failure of the vehicle. Examination of 
photographic records and other evidence disclosed that this vehicle and the 
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prc.\,ious failures were due to marginal design of the clamshell heat shields 
n.hicli ruptured under pressure buildups encountered during flight. 

. 

\' 1: I I1 C L E  DES C RI I'T ION 

The Astrobce 1.500 is a two stage,  solid propellant high performance 
sounding rocket designed to c a r r y  a 1001b. payload to an apogee of about 1500 
milcs. Figurc 1 shows a picture of 16.02 as it cleared its launcher a t  Wallops 
Station. Thc first stage is a four-finned Aerojet Junior and is assisted by two 
solid propellant auxiliary "RecruitTf boosters,  The second stage is an Aerojet 
30 IS 8000 "Alcor" rocket which utilizes conical flare plus minimal spin f o r  
neai- neutral aerodynamic stability. Four 1 KS-210 motors are used to spin up 
the second stage before firing. The 
second stage burns fo r  30 seconds. The Recruit boosters are retained after 
their  nominal 2 . 4  second burn t ime.  Figure 2 is a view of Astrobee 16.02 on 
its tubular launchcr at Wallops Station , Virginia, and indicates i t s  component 
par ts .  

First stage burning t ime is 40 seconds. 

Vehicle weight without payload was 11 , 500 Ib. Second stage payload weight 
was 133. 7 lb. 
stage payload, weighcd an additional 22 lb. , bringing the total payload weight to 
155.7 lb. Normal apogee with this payload weight is 1142 miles. 

An additional f i r s t  stage telemetry package, termed the inter- 

DESCRIPTION O F  EXPERIMENT 

The second stage payload can be seen in Figure 3 before assembly onto the 
rocket. The payload consisted of the second stage flight instrumentation , 
mounting hardware, and telemeter.  
interstage , carr ied the f i r s t  stage instrumentation and te lemeter .  

The second sma l l e r  payload, located in the 

The vibration experiment was located within the second stage payload and 
consisted of longitudinal, pitch, and yaw vibration channels. The transducers 
were of the piezoelectric type, each with a flat frequency response f rom 20 Hz 
to above 5 Itc, and were located at the base of the payload mount ring as depicted 
in Figure 4. 

A diagram of the flight vibration system is shown in Figure 5. Accclerome- 
t e r  signals were amplified by charge amplif iers ;  the inputs to  these amplifiers 
were frcquency low passed to  limit the channels to  their  respective IRIG fre- 
quency allocations. The signals then modulated the i r  respective voltage con- 
trolled oscillators, were mixed to f o r m  the s u b c a r r i e r ,  and were transmitted.  

2 
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The frequency response of each of the three vibration channels after low-pass 
filtering is shown in Figure 6.  

DATA REDUCTION SYSTEM 

A simplified functional diagram of the data reduction procedure used for  
the 16.02 data i s  shown in Figure 10. The frequency modulated (FM) subcar r ie r  
signal is fed into discriminators , which r e s to re  the data to the analog form.  
From this analog signal, composite records ,  narrow band filtered records ,  and 
RMS level records  a r e  produced. 
analyses a r e  performed during those portions of the flight where the data be- 
comes predominently random. 

Probability density and power spectral  density 

Frequency responses and amplitude linearity responses of the total instru- 
mentation system fo r  each channel a r e  shown in Figures 8 and 9. 
sponses a r e  total system responses and relate an input g level experienced by a 
t ransducer  to the output signal f rom the readout of the data reduction system in 
the laboratory. 

These re- 

During those portions of the flight where shock-excited transient responses 
were  observed, a narrow band oscillograph was obtained in order  to determine 
the vibratory acceleration level. Roll-off of the fi l ters utilized was 24 decibels 
(db) pe r  octave beyond the 3 db points. The 3 db-down points and the filter center 
frequency a r e  noted on each record.  An acceleration scale in *g, 0-peak is 
presented with each record in order  that the reader  may determine the accelera- 
tion lcvels of any portion of the record  at will. A composite acceleration t r ace  
is included on each record for  comparison with the fi l tered t r aces .  
during which the te lemeter  signal was lost and "ringing" of the fi l ter  caused by 
these signal losses  a r e  indicated by an asterisk (*). These periods do not con- 
stitute valid data and a r e  to be disregarded. 

Per iods 

RESULTS O F  DATA ANALYSIS 

Vehicle performance is summarized below for reference purposes. A typi- 
cal  v s  actual sequence of events for the flight is presented in Table 1. As can 
be  observed f rom this table, all events occurred slightly prematurely.  

Vehicle altitude and vehicle velocity v s  flight t ime a r e  prcscntcd in F i g x e s  
10 and 11 respectively. 
1190 statute miles at t ime T+14.2 minutes. 
achieved was 6 .2  x 10 feet/second and maximum second stage velocity was  
17.42 x 103 feet/second. 

The maximum altitude which the vehicle reached was 
The maximum first stage velocity 
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the interstage assembly , fired a n d  

Table 1 . *  
Typical v s  Actual Sequence of 15vents for NASA 1:Iight 1 (;. 02 

Actual Time 
Event Obs erv e 

Events Event Time 

0 s e c  T -t- 0 

1 . 9  s e c  

37 .5  sec T + 40.1 s e c  

-~ 

Anomaly 38.4 sec  

45.2 sec  T -I 48 sec 

T + 49.5 sec 

T i 50 sec 

Clamshell heat shield n.ns I)rogrnmmctl 
to open. 

-~ ~ 

47.4 sec ! Second-stage Alcor ignited and blast 

separated the f i r s t  stage.  I 

74.0 sec  Second-stage Alcor burned out and 
remained with payload. 

T + 80 sec 

Anomaly Insulation wrap f r o m  second-stage mo- 
t o r  unwrapped causing e r r a t i c  b chicle 
motion and decrease of spin to I.ear 

ze ro ,  thus compromising the two 
despin experiments. 

Squib-actuated pin pullers were pro- 
grammed to  release f i r s t  yo-yo de- 
spin system. Payload was to  despin 
f r o m  12 .5  to  S r p s .  

~ ___ 

104 sec 

T + 10 min 

T + 15 min Squib-actuated pin pullers w e r e  pro- 
grammed to release second yo-yo 
despin. Payload was to despin from 
9 to G r p s .  

Apogee 
___ 

T + 15 min 

~ __  

14 min, G sec T + 16 min, 15 sf 

T + 31 min, 22 sf 27 min, 52 SE 
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A slow speed analog data record  of longitudinal acceleration, plus the three 
vibration channels, for  the entire flight can be  seen in Figure 12 .  Maximum 
first stage steady state acceleration during recruit  burning was 14 .1  g: maximum 
first stage acceleration after recruit  burnout was 14 .5g .  The maximum steady 
state acceleration produced during second stage burning was 36.9 g.  

Records of vibration level, in g-RMS, vs  flight t ime a r e  presented for  the 
three  vibration channels in Figures 13, 14, and 15. It can be seen f rom these 
f igures  that all RMS levels f o r  the  flight were below 1 g RMS. These records 
give a good indication of the energy levels present in the signal, particularly 
that portion which is random in nature. Transonic and maximum dynamic pres-  
s u r e  regions of flight are noted f r o m  these records  by a large increase in the 
RMSlevel duringfirst stage burning. It i s  in these regions that the nature of 
the data becomes random due to the high acoustic environment encountered 
throughout these periods. 

For the most par t ,  transient sinusoidal vibrations measured during flight 
of the Astrobee 1500, NASA 16.02 , were relatively low in level. 
were the high levels measured during first  and second stage ignition and a high 
amplitude excitation that occurred during first stage burning at T+38 seconds. 
This high amplitude excitation is believed to have been caused by the loss of the 
clamshell  heat shields eleven seconds prior to planned re lease .  
summary of the predominant frequencies fo r  the entire flight and their  associated 
maximum levels is presented in Table 2 .  

Exceptions 

An over-all 

F i r s t  Stage Ignition 

Vibration responses for  first stage ignition were as indicated in Table 3. 
Figure numbers of illustrations corresponding to the various responses listed in 
the following tables , a r e  noted for  reference purposes. 

As noted in Table 3 ,  50 Hz longitudinal vibration responses are produced 
at lift-off while 67 Hz is seen to predominate in both lateral  axes.  
l a te ra l  axes are seen to exhibit almost identical vibration data. 

The two 

First Stage Burn 

After approximately 30 seconds of first stage burning, transients appeared, 
and continued until burn-out at T+37 seconds. 
in pitch and yaw axes a r e  noted during this period. Shortly thereafter,  at T+38.4 
seconds , an anomalous event occurred which produced very high structural  vi- 
brat ion levels.  
clamshell  heat shield, which dropped off without operation of the re lease  mech- 
an i sm,  eleven seconds pr ior  to planned re lease .  
these  periods were as indicated in Table 4. 

Vibrations of 11.5Hz and 75 Hz 

This is believed to have been caused by premature loss of the 

Vibrations produced during 
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Table 2 
Vibration Frequencies and Levels for NASA Flight 16 .02  

- 
0 . 3  

- 

ti. 7 

- 

16. 3 

- 
- 

38.4 

38.4 

38.4 

- 
- 

P $ i 4 5 . 3  

- 
104. € 

2. 7 1  

0 . 6 1  

0. 67 

0 .45  

3 . 0 1  

3. 22 

0. 36 

0. 2 1  

0.36 

4.41 

0.20 

0 .21  

7.10 

rt’q. (I1.L) 

50 

50 

50 

12. 5 

56 

790 

50 

8 

8 

300 

8 

8 

5. 1 

IRIG c 
Pitc.11 Vibral ion 

0.3  

0 . 6  

- 

8 

- 

31.6 

- 
38.4 

38.4 

38. 4 

- 
- 
- 
- 
- 
- 

65. 4 

66.2 

66. 5 

- 
86.9 

- 
88 

- 
- 

97 

97 

104.6 

0.35 

0.12 

0. 15 

0. 40 

1. 22 

1.99 

26.0 

0.55 

0. 52 

0. 29 

0. 42 

0 .22  

1. 19 

1.35 

2.10 

6 

req. (Hz)  

67 

9 . 3  

8 

1:. 5 

12.5 

56 

1200 

200 

200 

200 

140 

- 
6. 1 

6. 2 

140 

3 . 3  

- 

IRIG A 
Y;iw Vibr;ltion 

0.3  

0 . 6  

- 
8 

- 
31.6 

31.6 

38.4 

38.4 

38.4 

38. 5 

38. 5 

- 

- 
- 
- 

65. 4 

66. 2 

66. 5 

- 
- 

87.4 

88 

90 

- 
97 

97 

104.6 

0.35 

0.10 

0. 15 

0.65 

0.54 

1.26 

4.66 

4.80 

0.83 

0.96 

0 . 8 1  

0.49 

0. 29 

0.43 

0 .32  

0 .72  

1.79 

1. 15 

2.10 - 

67 

9 . 3  

8 

75 

11.5 

12.5 

56 

790 

167 

225 

200 

200 

200 

225 

6. 1 

225 

6. 2 

140 

3.3 



Table 3 
Vibration Data, First-Stage Ignition 

Event 

First-stage ignition 

First- s tage ignition 

First - stag e ignition 

Fir st- stage ignition 

First-stage ignition 

Transonic/max Q 

Transonic/max Q 

Transonic/max Q 

Transonic/max Q 

0.3 

0 . 3  

0.3 

0. G 

0 . 6  

G .  7 

8.0 

8 .0  

16.3 

Axis 

Longitudinal 

Pitch 

Yaw 

Pitch 

Yaw 

Longitudinal 

Pitch 

Yaw 

Longitudinal 

Second Stage SDin-up and Burning 

2.71 

0.35 

0.35 

0.12 

0.10 

0.61 

0.15 

0.15 

0. G8 

50 

67 

67 

9.3 

9.3 

50 

8.0 

8.0 

50 

Figure 

16 

17 

18 

17 

18 

19 

- 

- 

20 

At Tt45.2 seconds spin up of the second stage occurred but was greatly ob- 
scured by the loss of R F  signal. Low-level 50 IIz and 8 IIz Vibrations appeared 
shortly after spin-up. A transicnt response of unknown origin occurred at T+45.7 
seconds producing level's/up to 15.7 g.  Second stage ignition occurred at T+47.4 
seconds and was partly obscured by drop-out of R F  signal. Vibration responses 
f o r  th i s  period are as indicated in Table 5. 

An eight cps rigid body response,  indicative of coning motion, is seen to 
increase slowly f rom 0.21 g after spin-up to 0.86 g after second stage ignition. 
N o  lateral vibrations are noted during this period. 

Second Stage Burning 

Second stage burning transients are seen to be relatively low in level and 
all produced 200 Hz transient sinusoidal vibrations. No longitudinal vibrations 
were produced throughout this period. Second stage burn-out was characterized 
by a series of transients in addition to a period of random data, the analysis of 
which will be treated in a la le r  section. The low level 8 cps coning acceleration 
which appeared a f te r  spin-up slowly decreased in level to 0.20 g and remained 
there  until T+104 seconds. 
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Event 

First-stage burn 

First-stage burn 

First-stage burn 

Loss  of heatshield 

Loss  of heatshield 

Loss  of heatshield 

Loss  of heatshield 

Loss  of heatshield 

Loss of heatshicld 

Loss of heatshicld 

Loss of heatshield 

Loss  of heatshicld 

Loss of heatshicld 

Loss  of heatshield 

Table 4 
Vibration Data, First-Stage Burn 

r i m e  
(see) 

31.6 

31. 6 

31.6 

38.4 

38.4 

38.4 

38.4 

38.4 

38.4 

38.4 

38.4 

38.4 

38.5 

38.5 

Axis 

Pitch 

Yaw 

Yaw 

Longitudinal 

Longitudinal 

Longitudinal 

Pitch 

Pitch 

Pitch 

Yaw 

Yaw 

Yaw 

Yaw 

Yaw 

0.40 

0.65 

0.54 

0.45 

3.01 

3.22 

1.22 

1.99 

26.0 

1.26 

4.66 

4.80 

0.83 

0.96 

Frequency 
(Hz) 

11.5 

75 

11.5 

12.5 

56 

790 

12.5 

56 

1200 

12.5 

56 

790 

167 

225 

Figure 

21 

22 

22 

23 

2 3 

24 

25 

25 

26 

27 

27 

28 

- 

29 

Second Stage Post Burn-Out 

After second stage burn-out a se r i e s  of responses were  noted in the two 
lateral  axes. An over-all view of these responses can be observed in Figure 
36. These responses a r e  indicative of measuring system overload and recovery 
and while the response amplitudes do not correspond to actual excitation magni- 
tudes they do indicate the presence of some form of excitation. A s e r i e s  of‘ 
these overload responses occurred,  commencing at T+81 seconds, with a G H z  
acceleration appearing at T+88 seconds and la te r  intensifying a t  T+97 seconds. 
Finally at  T+104 seconds, extre’me motions of the vehicle occurred accompanied 
by a change of spin ra te  f rom 8 .2  revolutions per  second to 5 .1  revolutions per  
second, as ascertained from ra te  gyro records .  It is believed that at this point 
the second stage motor case  had failed structurally due to high motor tempera-  
tu res .  
T+150 seconds, thus compromising the two yo-yo despin experiments.  

A further decrease of spin brought the spin r a t e  down to near  zcm) at 

8 



. .  
* .  

Second-stage spinup 

Table 5 
Vibration Data, Second-Stage Ignition 

45.3 

Level Frequency x 
Unknown response 

Unknown response 

Unknown response 

Event 

45.8 

45.8 

45.8 

Second-stage ignition 

Unknown event 

48.0 

48.8 

Axis Figure 

Longitudinal 30 

30 Second-stage spinup I 45.3 Longitudinal 

Impulse 
(10 -2 10 0) Longitudinal 30 2.80 

Impulse 
(10 - 12 00) 

Pitch 15.72 31  

Impulse 
(10-660) Yaw 2.68 31 

Impulse 
( 10 -2 10 0) Second-stage ignition I 47.4 Longitudinal 10 .0  30 

Inipul s e 
( 10- 12 0 0) Second-stage ignition I 47.4 Pitch 4.22 31 

Impulse 
(10-660) Second-stage ignition 1 47.4 7.66 31 Yaw 

Longitudinal 0.36 8 30 

Longitudinal 4.41 I 300 32 

Table 6 
Vibration Da ta ,  Second-Stage Burn 

Frequency 
(Hz) 

Time 
(see) 

65.4 

65.4 

66.2 

66.2 

66.5 

66.5 

75.0 

Figure Event 

Second-stage burn 

Second- stage burn 

Second-stage burn 

Second-stage burn 

Second- stage burn 

Second-stage burn 

Coning motion 

Pitch 

Yaw 

Pitch 

Yaw 

Pitch 

Yaw 

Longitudinal 

0.54 

0.81 

0.52 

0.49 

0.29 

0.29 

0.20 

200 

2 00 

200 

200 

200 

2 00 

8 

33 

34 

33 

34 

33 

34 

35 
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86.9 

87.4 

88.0 

88.0 

90.0 

97.0 

97.0 

97.0 

97.0 

103.5 

104. ci 

104. (i 

104. G 

Table 7 
Vibration Data, E r ra t i c  Motion of Vehicle 

Axis 

Pitch 

Yaw 

Pitch 

Yaw 

Yaw 

Pitch 

Pitch 

Yaw 

Y A W  

Longitudinal 

Longitudinal 

Pitch 

Yaw 

Random Vibration Data 

Level 
0 to  peak (g) 

0.42 

0.43 

0.22 

0.32 

0.72 

1.19 

1.35 

1.79 

1.15 

0.20 

7.10 

2.10 

2.10 

Frequency 
(Hz) 

140 

225 

G .  1 

6.1 

225 

6.2 

140 

G .  2 

140 

8 

5 .1  

3 . 3  

3 . 3  

Figure 

- 

37 

- 
- 

38 

39 

40 

41  

42 

43 

43 

43 

43 

Flight data of the Astrobee 1500 becomes random in nature during two peri- 
ods of flight. 
to T+2 5 seconds, and indicated the high acoustic environment encountered as 
the vehicle passed through transonic flight and the maximum dynamic p res su re  
region. 
45, indicate a gaussian distribution. 
signals a r e  shown by power spectral  density (PSD) plots in Figures 46 and 47. 
Peak levels in g 2 / H z  and peak frequencies are noted for  convenience on each 
PSD plot plus the t ime interval of analysis. 
most of the random vibration energy i s  contained within the regions 40 HZ to 
100 IIz and 700 Ilz to 2000 Hz throughout the transonic region of flight. 
longitudinal 'axis indicates a peak at 50 IIz corresponding to the longitudinal re- 
sponse noted a t  lift-off. Similarly,  a peak in both lateral  axes  at approximately 
70 IIz corresponds to the G7 IIz lateral  response noted during lift-off. 

The f i r s t  period occurred during f i r s t  stage burning, f rom T+G 

Probability density analysis (PDA) plots of this region, Figures 44 and 
The power vs  frequency distribution of the 

As can be observed f rom these plots, 

The 

A second random data region appeared directly after second stage burn-out. 
This a lso proved to have a gaussian distribution, as seen in PDA plots in Figure 

. *  
I 
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b * 
48. Power spectral  density plots define the frequency-power relationship for  
the signal during this period in Figure 49. The grea te r  part of random vibration 
energy i s  seen to be above 120 Bz in all  axes , with some below 30 Hz in the 
longitudinal axis. 
Overall levels a r e  relatively low. 

A distinct peak, a t  800 Hz, is seen to occur in the yaw axis. 

The source of random excitation for this second region of random data has 

Since this 
not been determined. The altitude a t  which this phenomenon takes place pre- 
cludes an aerodynamic buffeting source for this random excitation. 
period of random vibration occurs during second stage trail-off of burning, a 
possible source of this excitation is some type of i r regular  burning phenomenon 
occurring during the burn-out phase. 

CONCLUDING REMARKS 

All vibrations during the burning phases of the Astrobee 1500 flight were 
relatively low in level with the exception of a longitudinal vibration of 2 .7  g at 
50Hz during first  stage ignition. 
of flight were below 1 g RMS. Most of the flight w a s  characterized by low level 
transient vibrations. 
l a t e r  s tages  of the flight indicating coning motion. 

Maximum RMS levels for the transonic region 

Some low level low frequency responses appeared in the 

An anomaly occurred during the flight which produced numerous structural  
responses  in all  axes .  
heat shield without i ts  re lease mechanism being activated. These responses 
ranged in frequency f rom 12.5Bz to 1200 Hz and, in one instance, reached a 
maximum of 26 g 's  at a frequency of 1200 Hz.  

This was the opening-up and dropping-off of the clamshell 

Late in the flight, the second stage motor case began to unwrap, due to high 
motor temperatures  , causing e r r a t i c  motion of the vehicle. 
by an 5.1 Hz response at  a maximum level of 7 . 1  g which quickly decayed to zero. 

This was indicated 
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Figure 1 .  Launch of Astr-obee 15@@ from Launcher 2 at 
Wallops Station, Va., October 21, 1964 
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Figure 3. Astrobee 1500 Payload Before Inr .J l lat ion on R 
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Figure 4. Position of Vibration Experiment on Astrobee 1500 Payload 
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Figure 10. Altitude vs Flight Time 

2 1  



19 

18 

17 

16 

1: 

1 4  

1: 

x 1: 
b 

h 
0 

L 

Lc 

1 
0 

2 
51 z 1( 
5 
v 

U 

W I  > 
3 

5 
J 

0 
I- 

I 

FLIGHT TIME (seconds) 

Figure 1 1 .  Total Vehicle Velocity vs Flight Time 
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SECON D-STA( 
'AGF RI  IRNnl IT 6 

LIFTOFF 1 LONGITUDINAL ACCELERATION i 

PAYLOAD VIBRATION,PITCH LPOF = 1200 HZ 
E 

PAYLOAD VIBRATION YAW LPOF = 660 Hz 
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SECON D-STAG E BURNOUT 

I 

i 

Figure 12. Overall Vibration Time History 
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T + 1w T t O  T I I O  ~ + m  T + ~ O  T+UI  T ~ Y )  T C ~  T + ~ O  T + E O  ~ + m  
LONGITUDINAL PAYLOAD VIBRATION LPOF = ZlOOHz AVERAGING TIME 0 045 SEC 

Figure 13. Payload Longitudinal Vibration rms Level Time History 

Figure 14. Payload Pitch Vibration rms Level lime History 

Figure 15. Payload Yaw Vibration rms Level Time History 
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T + O  T + 1  T 

+2,,31 g 

-2.31 g 

t1 .49 g 

t 

i 

FIRST-STAGE IGNITION 

I 

PAYLOAD VIBRATION LONGITUC 

-1.49 g Fc = 50 HZ F, = 3.85 HZ FH : 

Figure 16. Longitudinal Vibration, Liftoff, T + 0 : 50Hz 1 
I 



T + 1  T + 2  T +  T + O  
T + 3  

FIRST-STAGE IGN ITION 
t1.30 g 

-1.30 g 
PITCH LPOF = 1200 Hz PAY LOAD VI BRAT ION 

INAL LPOF = 2100 Hz 1; t 

t 

t 

II 4 6.5 Hz 
jl I t0.33 g i 

i -0.33 g I 

F, = 67 HZ F, = 51.5 HZ FH = 87 HZ 

Figure 17. Pitch Vibration, Liftoff, 
T + 0 :  67 and 9.3Hz 



T + O  T + 2  
T + 7  T i -  

t1.35 g 

FIRST-STAGE BURN IRREGULARITY AT T i- 
-1.35 g +2.48 g 

Fc = 67 HZ F, = 51.5 z F, = 87 HZ i 
I 

I 

+0.25 g 

-0.25 g 

I 

! 
t0.35 g 

-0.35 g 

Fc = 8.5 Hz FL = 6.5 Hz/ F, = 11 Hz 

I 
Figure 18. Yaw Vibration, Liftoff, T +):I67 and 9 . 3  Hz 

Figure 19. Longitudinal Vibration, 
Transonic Flight, T + 6.7 Sec : 50 Hz 
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T + 16 T + 17 

FIRST-STAGE BURN IRREGULARITY AT T -I- 16.3 SI 

t1.92 g 

-1.92 g 
- 

PAYLOAD VIBRATION LONGITUDINAL LPOF = 211 

i 

I 
I 

+0.51 g 

-0.51 g 

Fc = 50 HZ F, = 38 HZ F, = 65 HZ 
I 

___ 

Figure 20. Longitudinal Vibration, Transonic Flight, T + 16.3 Sec : 50Hz 



ifCONDS 

t1.30 g 

bo i i; Hz 
i1 

T + 31 T + 32 T -I- 33 

-1.30 g '\ 

PAYLOAD VIBRATION PITCH LPOF = 1200 HZ 

+0.36 g 

-0.36 g 

I 
Fc = 11.5 iz FL = 8.85 HZ F,= 15 HZ 

Figure 21. Pitch Vibration, First-Stage 
Burn, T + 31.6 Sec : 12Hz 
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T + 32 . .  

1 
i 
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~ 

T + 40 T + 39 T + 38 T + 31 *__ , 
8 

PREMATURE LOSS OF HEATSHIELD 
t1.33 g 

+1.92'g 

-1.92 g -1.33 g 

PAYLOAD VIBRATION LONGITUDINAL 
LPOF = 2100 Hz LOAD VIBRATION YAW LPOF = 660 Hz 

I 
- 1 1  

* 

t0.28 
' 5 "  

4 "  4 "  
-Id". 

-0.28 

FL = 8.85 HZ FH = 15.0 HZ 

1 
/I 

I /  
I 

+0.55 g 

1 1  
t ,  

-0.55 g 

t0.28 g 

-0.28 g 

Fc = 12 HZ FL = 9.2 HZ FH = 15.6 HZ 
iv 

Figure 22. Yaw Vibration, First-Stage Burn, T + 31.6 Sec : 75 and 12 Hz Figure 23. Longitudinal Vibration, Premature 
Heatshield Release, T + 38.4 Sec : 

56 and 11.5Hz 
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T + 38.3 T + 38.2 T + 38.4 * 

+2.72 g 

-2.72 g 

PAYLOAD VIBRATION LONGITUDINAL LPOF = 2100 Hz 

* 

+1.56 

-1.56 
Fc = 790 HZ FL = 610 HZ FH = 1050 HZ 

BOLDOUT 

Figure 24. Longitudinal Vibration, Premature Heatshield Release, 
T + 38.4 Sec : 790Hz 
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T t 38 

'3OLDOUT FRAME 6 
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-0.75 g 

T + 39 

PREMATURE LOSS OF 

T + 40 

H EATSH I ELD 

PAYLOAD VIBRATION PITCH LPOF = 1200 Hz 

t1.00 g $ 2  

-1.00 g 

I Fc = 56 HZ F, = 4.5 HZ FH = 7.3 HZ 
I 

Fc = 11.5 HZ FL = 8.85 HZ F H  = 15 HZ 

Figure 25. Pitch Vibration, Premature 
Heatshield Release, T + 38.4 Sec : 

56 and 11.5Hz 
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PITCH VIBRATI LPOF = 1200 Hz 
I 

F, = 1200 HZ 3db DONN POINTS FL = 930 HZ FH = 1560 HZ 

Figure 26. r l t cn  v i~ ra t i on ,  Premature 
Heatshield Release, T + 38.4 Sec : 

1200 Hz 



T + 38 T + 39 T t 40 
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PAY LOF 
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Fc = 56 HZ F, = 43 HZ FH = 73 Hz, 

t1.41 g 
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h 
I’ d 

V 
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\ Fc ‘=  11.5 HZ FL = 8.85 HZ FH = 15 HZ 

Figure 27. Yaw Vibration, Premature Heatshield Release, 
T+38.4Sec:  56and l l . 5Hz  
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Figure 28. Yaw Vibration, Premature 
Heatshield Release, T + 38.4 Sec : 

790 Hz 
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-0.31 g 
HZ FH = 290 HZ 

Figure 29. Yaw Vibration, Premature 
Heatshield Release, T + 38.5 Sec : 

225 Hz 
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-2.48 g I 

LONGITUDINAL VIBRATION LPOF = 2100 Hz 
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F, = 35 HZ 

+0.75 g 
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Figure 30. Longitudinal Vibration, - .  
T + 45.7 Sec : 50 and 8 Hz 

'P0L;DIOUT FRI1M;E $ 
I I 

43 



T + 48 T + 47 T + 46 T + 44 T + 45 

SPINUP- SECO N D-STAG E FIR IN G / 
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PAYLOAD VIB ?ATION PITCH 
LPOF = 1200 Hz 
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r---7 
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I +2.58 

-2.58 

PAYLOAD VIBRATION YAW LPOF = 660 Hz 

0 Figure 31. Pitch and Yaw Vibration, 
Second-Stage Events 
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Figure 32. Longitudinal Vibration, Unidentified Impulse, 
T + 4 8 . 8 S e c :  300Hz 
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Figure 33. Pitch Vibration, Second-Stage * 

Burn, T + 65.4 Sec : 200 Hz . 
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Figure 35. Longitudinal Vibration, 
Second-Stage Burnout, T + 75 Sec : 
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Figure 36. Erratic Vehicle Motions . 
After Second-Stage Burnout 
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Figure 37. Yaw Vibration, Erratic Vehicle Motion, 
T + 87.4 Sec : 225Hz 
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Figure 38. Yaw Vibration, Erratic Vehicle - 
Motion, T + 90 Sec : 225Hz 
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Figure 39. Pitch Vibration, Erratic Vehicle . 
Motion, T + 97 Sec : 6Hz 
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Figure 40. Pitch Vibration, Erratic Vehicle 
Motion, T + 97 Sec : 140Hz 
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Figure 41. Yaw Vibration, Erratic Vehicle 
Motion, T + 97 Sec : 6Hz 
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ure 42. Yaw Vibration, Erratic Vehicle 

# 3 -  Motion, T + 97 Sec : 140Hz 
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Figure 43. Longitudinal, Pitch, and Yaw 
Acceleration at T + 104 Sec Indicating 

p0LSIOUT 2 - k  Erratic Vehicle Motion 
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Figure 46. Power Spectral Density, Longitudinal, Pitch, 
and Yaw Payload Vibration (T + 6 to T + 8 Sec) 
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Figure 47. Power Spectral Density, Longitudinal, Pitch, 
and Yaw Payload Vibration (T + 14 to T + 16 Sec) 
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Figure 48. Probability Density Analysis, Longitudinal, Pitch, 

\ 
and Yaw Payload Vibration (T + 75 to T + 77 Sec) 

\ 
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Figure 49. Power Spectral Density, Longitudinal, Pitch, 
and Yaw Payload Vibration (T + 75 to T + 77 Sec) 
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